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An analytical framework is presented to interpret coupling between axial normal stresses and torsional 
shearing stresses observed in anisotropic fibres. This coupling can be uniquely described in terms of the 
material properties describing the anisotropy and the testing geometry. The coupling is described through a 
consideration of the rotation of material symmetry directions caused by shear and the application of standard 
transformation laws governing anisotropic elastic properties. The analysis is employed to describe the 
apparent linear increase in torsional modulus with axial tensile stress observed in anisotropic fibres. Isotropic 
fibres are predicted and observed to be free of such coupling. The results support the recent modelling of 
oriented polymer fibre compressive strength as an elastic buckling instability. 
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I N T R O D U C T I O N  

While the tensile properties of various polymeric high- 
performance fibres are of primary interest, the anisotropy 
of mechanical properties that many of these fibres exhibit 
is also of relevance to many engineering applications as 
well as to the thorough characterization of the materials. 
Yet, few studies have been concerned with the 
determination of mechanical anisotropy in polymeric 
high-performance fibres. Some recent studies have begun 
to address this area by analysis 1'2 and by experiment via 
investigation of fibre torsional behaviour 1-6. Torsional 
experiments have illustrated the high degree of anisotropy 
present in many of these polymeric high-modulus/high- 
strength fibres. 

In order to characterize fully the mechanical 
anisotropy of a material, multiple tests are required 
involving simple stress states as well as more complicated 
stress states and combined states of stress. The 
characterization ofanisotropy in high-performance fibres 
is experimentally complicated by restrictions imposed by 
the fibre geometry. The use of combined states of stress 
testing for fibres, however, would provide valuable 
mechanical property information as well as provide tests 
of various structural models that have been developed to 
describe the mechanical properties of the fibres. 

The behaviour of various high-modulus/high-strength 
fibres was recently investigated in combined torsion and 
tension experiments as part of a dissertation by 
DeTeresa 5. Coupling effects were observed in these 
experiments for anisotropic fibres whereas no coupling 
was found for an isotropic fibre. The coupling between 
tensions and torsions was interpreted empirically via a 
resistance to volume change. In the present work, a 
theoretical framework is developed to interpret these 
coupling effects in terms of the material constants (com- 
pliances, stiffnesses) describing the anisotropy of the 
fibre. Additional experimental results are also reported. 

C O U P L I N G  ANALYSIS 

In the most general case of anisotropy, coupling effects 
between axial normal strains and torsional shearing 
strains are expected 7,a. If material symmetry arguments 
are imposed such that the fibre is no more complicated 
than cylindrically orthotropic (having three mutually 
perpendicular planes of symmetry, e.g. r, 0, z), then such 
coupling is not expected 7. This is also the case for 
transversely isotropic and isotropic fibres. Coupling 
effects are expected and observed, however, even in 
orthotropic bodies when various off-axis tests are 
employed and care is not taken to ensure that a uniform 
state of stress is achieved 9. 

In order to develop a framework for describing 
coupling effects in fibre testing, the case of torsional 
testing of a cylindrically orthotropic fibre under the 
combined influence of an axial load will be considered. To 
achieve these combined testing modes on fine-diameter 
fibres, the fibres are rigidly bonded or clamped at each 
end of a gauge length, at which points axial and torsional 
deformations are imposed. As simple shear is imposed 
upon the fibre, the axial plane of elastic symmetry is 
considered to be rotated away from the fibre axial 
direction by an amount equal to the torsional shear angle. 
Thus, the axial fibre loading can be considered to be an 
off-axis loading with respect to the rotated material 
symmetry directions. Potential coupling between torsion 
and axial stress may then be evaluated following the 
standard rules of transformation of the orthotropic elastic 
constants and the generalized Hooke's law. 

Following standard engineering notation 7,8, Hooke's 
law may be expressed in terms of material compliances as: 

El = a~jo'j (1) 

where aj are the stresses, ei the strains and aij the elastic 
compliances with a summation over index j implied in the 
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usual way. The component of equation (1) describing the 
fibre torsional response for a cylindrically orthotropic 
fibre is: 

"~ = a66 T (2) 

where V and z are the shearing strain and stress, 
respectively. If now the rotation of the material symmetry 
directions is considered, equation (1) is to be replaced by: 

ei=a[fl~ (3) 

a[j represents the transformed elastic compliances 
accounting for the rotation. Equation (2) then becomes: 

= a l  6 O z  - [ - -  a~60" r + a'36t70 + a~66 ~ (4) 

where the coupling terms a ]6  , a~6 and a~6 a r e  no longer 
absent. Neglecting the small radial and tangential stresses 
that may arise due to the cylindrical orthotropy t, this 
further reduces to: 

T=a'~6tYz + a'66z (5) 

where a ]6  and a~6 a r e  defined from the transformation 
rules as s: 

a] 6 = [2a2~ sin2 O-  2at 1 cos 2 0 "4- (2a~ 2 + a66) 

(cos 2 O-  sin 20)]sin 0 cos 0 

a~6 = 4(a 11 + a22 - -  2a~ ~ - -  a66)s in20  COS20 + a66 

(6) 

with 0 being the angle describing the rotation of the 
symmetry axis with respect to the loading direction and 
aij the elastic compliances describing the cylindrical 
orthotropy with respect to material symmetry directions. 

Owing to the odd powers of the sine function involved 
in the coupling term a] 6, care must be taken in accounting 
for the proper sign of the transformation angle 0 s'~ o. The 
angle 0 is measured from the test direction z to the 
material symmetry axis. The magnitude of 0 will be taken 
as the magnitude of the shear strain ~. That is, the 
material symmetry axis originally along z is assumed to 
be effectively rotated away from the axial direction as a 
result of shearing (Figure I). For positive shear stress and 
strain, as in Figure lb, 0 is thus measured in a clockwise 
direction and is hence negative. For negative shear, as in 
Figure lc, 0 is measured in an anticlockwise or positive 

direction. Thus, 0 is always of opposite sign to V: 

0= - y  (7) 

Considering only small shearing angles, we 
additionally make use of the following linearizations: 

cos 0,-, 1 

sin 0 ~ 0 

Equations (5), (6) and (7) may then be combined to yield: 

= a66 l" - -y (2ax  2 - 2al 1 + a66)°'z (8) 

Rearranging and defining z/V as the apparent or measured 
shear modulus (Gin) yields: 

1 1 
Gm = -I---(2al 2 --2all + a66)trz 

066 a66 

or in terms of the more common engineering constants: 

G m = G + (  1 2G(l+v)) a z E  (9) 

where E is the axial Young's modulus (1/a x x), G is the true 
shear or torsional modulus (1/a66) ,  and v is Poisson's 
ratio. 

The coupling between axial normal stress and torsional 
response described by equation (9) predicts an apparent 
linear increase in measured torsional modulus with 
applied axial stress. The material constant term enclosed 
in large parentheses in equation (9) provides a measure of 
the anisotropy of the fibre. For  convenience, we may write 
equation (9) as: 

Gm = G -b Aa= (10) 

where A = [1-2G(1 + v)/E] represents a measure of the 
fibre's anisotropy. For an isotropic fibre, A is identi- 
cally zero by definition, whereas for highly anisotropic 
materials where G/E is typically a small number 1 -3, A 
approaches a value of unity. This is consistent with the 
observations of DeTeresa s on isotropic and anisotropic 
fibres and provides an explanation of the effect based on 
the application of anisotropic linear elasticity rather than 
as an empirical resistance to volume change. 
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Figure 1 Geometry of shear deformation: (a) reference, (b) positive 
shear and (c) negative shear 

EXPERIMENTAL 

Fibre shear moduli were measured via free torsional 
oscillations using a variation of the equipment described 
in refs. 5 and 11. The apparatus is depicted in Figure 2. 
The fibre sample is first bonded using jewellers' wax onto 
a cardboard tab defining a total sample length of 100 mm. 
A torsion bar made from 20 gauge phosphor-bronze wire 
is then similarly bonded to the centre of the sample length. 
One end of the bonded sample is clamped in the top 
clamp of the apparatus and then the sides of the tab are 
carefully cut away to allow the sample to hang freely. 
Care is taken to allow the sample to come to rest to 
remove any twist that may have been imparted during 
mounting. 
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Figure 2 
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The sample is then lowered into the glass cylinder and 
the bot tom tab guided through a rectangular slot in the 
lower cylinder end plate. The slot provides freedom of 
axial movement but  not of rotational movement. Special 
care is taken to ensure that the sample hangs vertically 
and the bottom tab is carefully centred in the trough. 
Tension is applied to the fibre by suspending weights from 
the lower tab. Inertial effects due to vibration are 
minimized by employing a small rubber loop from which 
the tension weights hang. 

The moment of inertia of the bar used was 2.765 g mm 2 
and provided for periods of oscillation in the range of 5- 
20 s for the fibres tested. The torsion bar is set into motion 
by means of a guide bar through which a rotation of 90- 
180 ° is imparted. The period of oscillation is measured by 
a timer connected to a reflective scanner which detects the 
passage of the torsion bar past the zero position. 
Oscillations of the order of -t- 90 ° were employed for the 
measurements. Four  to ten periods were measured and 
averaged and then two to four repeat measurements 
made. The tension weight is changed and the 
measurements repeated. 

After testing, the fibre sample was cut from the torsion 
bar and the tabs and both halves were then deniered using 
a Vibromat M 12. An average fibre radius was then 
calculated from the denier and known density of the fibre. 
Single filaments used for these torsional tests were 
obtained by extracting filaments from the following 
yams: type 30 glass roving (Owens Coming), type 717 
nylon (Du Pont) and 'Kevlar'* 49 aramid (Du Pont). 

RESULTS AND DISCUSSION 

For  a centrally bonded torsion bar, as indicated in Figure 
2, the shear modulus for a fibre of circular cross-section is 
given by: 

2~ZlbL 
G m - p2R4 (11) 

* Du Pont registered trademark 
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where I b is the moment of inertia of the torsion bar, L the 
total fibre length, R the fibre radius and P the period of 
oscillation. Any influence of axial tension on the torsional 
behaviour of the fibre would thus be manifested in a 
change in the period of torsional oscillation, all other 
factors in equation (9) being constant for a given sample. 
The experimental results are summarized in Figures 3-5. 

Within experimental precision, the period of torsional 
oscillation of the glass filaments was found to be constant 
at all tensile loadings, including loads near the break 
strength (Figure 3). Thus the glass fibre shear modulus 
was unaffected by the simultaneous application of a 
tensile load. According to equation (10) the anisotropy 
term A describing coupling effects is equal to zero, 
characteristic of an isotropic fibre. This is in agreement 
with expectations for glass and with the observations of 
DeTeresa 5. 

The periods of torsional oscillation for both the nylon 
and Kevlar ¢ 49 filaments were found to decrease with 
increasing tensile load. Figures 4 and 5 summarize the 
nylon and Kevlar ® 49 filament behaviour, respectively. 
This decrease in period of oscillation is equivalent to an 
increase in the apparent or measured shear modulus as 
depicted in Figure 6 for the Kevlar ® 49 fibres. This 
observed change in shear modulus with axial load is 
consistent with the fibres being anisotropic, as described 
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Figure 3 Torsional response of glass fibres: (O) 4.0 denier filament; 
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Figure 5 Torsional response of Kevlar® 49 filaments: (O) 1.56 denier 
filament; (1:]) 1.42 denier filament 
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Figure 6 Calculated shear modulus dependence on axial stress for 
Kevlar ® 49 fibres. The full line is a fit to equation (10). Symbols 
represent different individual filaments 

by equation (10). That is, the anisotropy term A in 
equation (10) is non-zero. Linear regression analysis of 
the data permits a calculation of the anisotropy A as 
expressed in (10). The calculated results are given in Table 
I, where the fibres are ranked from isotropic (glass) to 
highly anisotropic (Kevlar®). 

The calculated values of anisotropy presented in Table 
1 have an accuracy no better than 20 %, which prohibits a 
precise evaluation of Poisson's ratio for these fibres. The 
fourth-power dependence of the shear modulus on the 
fibre radius in these tests is the major source of 
uncertainty. These experiments do, however, provide an 
independent measure of the anisotropy term A, which 
also appears in recent models describing the tensile 
behaviour of oriented polymer fibres 13-16. The value 
obtained for Kevlar ® 49 is in good agreement with values 
used by Northolt la-15 in modelling the deformation of 
poly(p-phenylene terephthalamide) fibres. 

It is interesting to note one peculiarity that equations 
(9) and (10) suggest. If axial compression rather than axial 
tension were applied in these torsion experiments, then a 

Table 1 Summary of fibre torsional behaviour 

E G 
Density 

Fibre (gcm- a) (g/denier) (GPa) (g/denier) (GPa) A 

Glass 2.5 300 65 135 30 0 
Nylon 1.14 55 5.5 6.2 0.62 0.78 
Kevlar ® 49 1.44 930 120 16 2 0.95 

decrease in the apparent shear modulus is expected. At a 
particular value of compressive stress, the apparent shear 
modulus would become zero. In the case of a highly 
anisotropic fibre, where the anisotropy term approaches a 
value of unity, this compressive stress would be equal in 
magnitude to the shear modulus G. At this stress level, an 
instability is expected as Gm becomes zero. This effect 
supports recent theoretical work 5'~7 that describes the 
compressive strength of oriented polymers as a buckling 
instability predicted to occur at a compressive stress of 
magnitude equal to the shear modulus. 

The theoretical framework presented provides a means 
of evaluating fibre anisotropy from combined stress 
testing. This framework may be easily extended to other 
types of loadings to describe behaviour based on material 
properties and testing geometries. Further evaluation of 
anisotropic fibre behaviour under multiple stress states in 
light of similar analysis may aid critical evaluation of 
structural models proposed to describe fibre mechanical 
properties. 
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